

1

- Engineering design involves the application of mathematics and science to solve real-world problems
- A failure of a design may cause harm to life, health, the environment or the finances of a client or the public
- The real world is modeled through equations and differential equations
- Conservation and other physical laws
- Relationship between forces
- The superposition principle

2

4

5

- For example, a circuit is described by Maxwell's equations
- This involves partial differential equations
- Using wires, this effectively restricts these equations to one dimension
- These partial differential equations can thus be simplified to differential equations
- The use of linear circuit elements such as capacitors, resistors, inductors and memristors together with alternating current can further simplify the solutions to these differential equations to algebraic equations
- Transistors, as well, may also be described linearly under the conditions of small-signal model
- More complex models may still be simulated using differential equations

7

6

Background

- The response of a digital circuit can be described by a system of linear equations
- This can involve millions of linear equations in an equal number of unknowns
- Solving such a system cannot be done analytically in either a reasonable amount of time or memory
- Consequently, we will approximate such systems to find approximate solutions
- Such solutions use numerical algorithms

9

- For example, from calculus, we know that

$$
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

- Let's try this out in C++:

```
double diff( double f( double ), double x, double h ) {
        return (f( x + h ) - f( x ))/h;
    }
```

- This can be called with
std::cout << diff(std::sin, 1.0, 0.001) << std::endl;

12

13

3
 2-2

Error, absolute error and relative error

- If $x_{\text {approx }}$ is an approximation of a value x, we write $x \approx x_{\text {approx }}$ and

$$
x=x_{\text {approx }}+\varepsilon
$$

- Consequently, the error ε is always:

$$
\varepsilon=x-x_{\text {approx }}
$$

- Usually, however, we may refer to the absolute error:

$$
\varepsilon_{\mathrm{abs}}=\left|x-x_{\mathrm{approx}}\right|
$$

- We may also refer to the relative error and percent relative error:

$$
\begin{equation*}
\varepsilon_{\text {rel }}=\frac{\left|x-x_{\text {approx }}\right|}{|x|} \quad \varepsilon_{\text {rel }} \cdot 100 \%=\frac{\left|x-x_{\text {approx }}\right|}{|x|} \cdot 100 \% \tag{0}
\end{equation*}
$$

14
Error, absolute error and relative error

- For example, from calculus,

$$
f(x+h)=f(x)+f^{(1)}(x) h+\frac{1}{2} f^{(2)}(\xi) h^{2}
$$

- The relative error, assuming $f(x+h) \neq 0$, is

$$
\frac{\left|\frac{1}{2} f^{(2)}(\xi) h^{2}\right|}{|f(x+h)|}=\frac{1}{2} \frac{\left|f^{(2)}(\xi)\right|}{|f(x+h)|} h^{2}
$$

- The absolute error is

$$
\begin{equation*}
\left|\frac{1}{2} f^{(2)}(\xi) h^{2}\right|=\frac{1}{2}\left|f^{(2)}(\xi)\right| h^{2} \tag{0}
\end{equation*}
$$

17

- A non-zero real number is written as a decimal number when it is in the form

$$
d_{0} \cdot d_{1} d_{2} d_{3} d_{4} d_{5} \cdots \times 10^{e}
$$

- Here we have
- d_{0} is a non-zero digit
- Each other d_{k} is a decimal digit
- The exponent e is an integer
- This is usually contrasted with fractional form for rational numbers

Decimal numbers

- If $d_{k}=0$ for all $k>n$, we will say

$$
d_{0} \cdot d_{1} d_{2} d_{3} d_{4} d_{5} \cdots d_{n} \times 10^{e}
$$

has a terminating decimal representation

22

23

25

- Most real numbers have infinitely many digits
- These require an infinite number of digits to store
- Even most terminating decimal representations have far more digits than we care about
3.1415926535897932384626433832795028841971693993751
- However, we cannot store an infinite number of digits
- In fact, the most efficient means of implementing such numbers is with a fixed number of digits
- We will need to represent all such numbers by a decimal or binary number with a fixed n digits in the mantissa

28

- Rules for decimal rounding:

$$
d_{0} \cdot d_{1} d_{2} d_{3} d_{4} d_{5} \cdots d_{n} d_{n+1} d_{n+2} \cdots
$$

- To round a decimal representation to $n+1$ digits:
- If the digit d_{n+1} is $0,1,2,3$ or 4 , just drop all subsequent digits
- If the digit d_{n+1} is $5,6,7,8$ or 9 , but not exactly $5000 \cdots$, we will
- Drop all subsequent digits
- Add " 1 " to d_{n} p possibly resulting in a carry
- For example,
1.534982 rounded to three digits is 1.53
1.534982 rounded to four digits is 1.535
1.534982 rounded to five digits is 1.5350
1.534982 rounded to six digits is 1.53498

29
30

- Rules for binary rounding:

$$
b_{0} \cdot b_{1} b_{2} b_{3} b_{4} b_{5} \cdots b_{n} b_{n+1} b_{n+2} \cdots
$$

- To round a binary representation to $n+1$ bits:
- If the next bit $b_{n+1}=0$, just drop all subsequent bits
- If the next bit $b_{n+1}=1$ but not exactly $1000 \cdots$, we will
- Drop all subsequent bits
- Add " 1 " to the last bit b_{n}, possibly resulting in a carry
- For example,
1.1011011 rounded to three bits is 1.11
1.1011011 rounded to four bits is 1.110
1.1011011 rounded to five bits is 1.1011
1.1011011 rounded to six bits is 1.10111

3 (.
 Rounding

- Note that we have only discussed rounding in our formal representation

$$
\begin{aligned}
& d_{0} \cdot d_{1} d_{2} d_{3} d_{4} d_{5} \cdots \times 10^{e} \\
& 1 . b_{1} b_{2} b_{3} b_{4} b_{5} \cdots \times 2^{e}
\end{aligned}
$$

- If the decimal/radix point is anywhere else, we count the digits starting at the most significant digit: 0.0005838125 rounded to 4 digits is 0.0005838 108513.829 rounded to 3 digits is 109000 ,
but it's clearer if we present it as 1.09×10^{5} 0.00011000101_{2} rounded to 5 bits is 0.00011001_{2} 111001010.001_{2} rounded to 4 bits is 111000000_{2}, but it's clearer if we present it as 1.110×2^{8}

Significant digits

- Another colloquial means of describing the relative error is to use the concept of significant digits

$$
\varepsilon_{\text {rel }}=\frac{\left|x-x_{\text {approx }}\right|}{|x|} \leq 5 \cdot 10^{-d}
$$

- We will never calculate this explicitly
- Instead, we will use the number of significant digits to give a rough estimate of the relative error
-1 significant digit is a relative error no greater than 50%
-2 significant digits is a relative error no greater than 5%
- A rough approximation is as follows:
- $x_{\text {approx }}$ approximates x to d significant digits

$$
\begin{aligned}
& \text { approx approximates } x \text { to } d \text { significant digits } \\
& \text { if both } x \text { and } x_{\text {approx }} \text { rounded to } d \text { digits agree in all digits }
\end{aligned}
$$

33

- Thus, if x approximates $\sqrt{2}$, it follows the average of x and $2 / x$ must be a better approximation

$$
\frac{1}{2}\left(x+\frac{2}{x}\right)=\frac{x}{2}+\frac{1}{x}
$$

37

Precision versus accuracy

- When solving a problem numerically,
we will use one or more different algorithms
- We will describe an algorithm through its accuracy and its precision
- In general, all of our algorithms are parameterized by at least one value:
- A value of h that may be made arbitrarily small
- An integer n that may be made arbitrarily large
- In approximating a solution x,
- An algorithm is accurate if as our parameters are adjusted, the absolute error is correspondingly reduced
- One algorithm is more precise than another if the absolute error for the first algorithm is generally less than the absolute error of another

- This gives us a system of two linear equations in two unknowns:

$$
\begin{aligned}
4 a+b & =5 \min \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \\
a+4 b & =5 \max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}
\end{aligned}
$$

- Using linear algebra, we may now solve for both a and b :

$$
\begin{align*}
a & =\frac{4 \min \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}-\max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}}{3} \\
b & =\frac{4 \max \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}-\min \left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}}{3} \tag{0}
\end{align*}
$$

41

- Suppose we are uniformly sampling from the interval $[5,25]$
- We could take 10 readings:

$$
8,18,16.8,18.8,13.4,1321,15,18,9.6
$$

- We see the minimum of these, 8 , is an okay approximation to 5
- We could take 20 readings:
14.2, 16.4, 5.6, 10.8, 9.4, 24.8, 19.6, 13.8, 5.4, 14.6, 22.6, 24.6, 12.6. 8.4. 14.2, 8.8, 11.8, 23.6, 22.6, 14.2
- We see the minimum of these, 5.4 , is a more accurate approximation of 5
- As n becomes larger, it seems that the minimum is a better approximation of the lower bound 5

- Thus, given n samples from $[a, b]$
- The minimum of the n samples is not as accurate as our linear combination of the minimum and maximum
- The minimum of the n samples is more precise than our linear combination of the minimum and maximum
- As we increase n, both formulas become more precise
- Try this yourself, suppose we have different $[a, b]$:
- What are your estimates of a for five samples:

$$
-5.98,-1.94,-6.28,-2.72,-5.86
$$

- What are your estimates of a for ten samples:

$$
-6.22,-4.62,-2.80,-5.66,-2.94,-4.32,-2.44,-2.34,-4.40,-4.11
$$

- These were uniformly sampled from [-6.3, -1.3]

45

- Following this topic, you now
- Understand the purpose of this course
- Are aware of the differences between discrete mathematics and continuous mathematics (calculus)
- Have observed that floating-point numbers cause issues
- Know the ideas behind:
- Absolute and relative errors
- Decimal and binary representations of numbers
- Rounding and significant digits
- Understand the concepts of accuracy and precision
- Have an overview of what will be covered in the upcoming lectures

49

Disclaimer

These slides are provided for the ECE 204 Numerical methods course taught at the University of Waterloo. The material in it reflects the author's best judgment in light of the information available to them at the time of preparation. Any reliance on these course slides by any party for any other purpose are the responsibility of such parties. The authors accept no responsibility for damages, if any, suffered by any party as a result of decisions made or actions based on these course slides for any other purpose than that for which it was intended.

